
Performance Modeling for the
High Level Architecture

Sudhir Srinivasan
Mystech Associates, Inc.

5205 Leesburg Pike, Suite 1200
Falls Church, VA 22041
sudhirs@mystech.com

Paul F. Reynolds, Jr.
Department of Computer Science

University of Virginia
Charlottesville, VA 22903
reynolds@Virginia.EDU

KEYWORDS
HLA, performance analysis, simulation modeling, federation analysis tool

ABSTRACT

Success of the High Level Architecture (HLA) is determined in large part by the performance of federations of HLA-
compliant simulations. This paper describes an on-going performance modeling effort sponsored by DMSO to
construct a configurable simulation model of HLA-compliant federations in order to obtain first-order performance
characteristics of current and future federations. Supplementing the prototype experiments, this federation analysis
tool will provide an economical means for a broader range of non-intrusive tests. It is expected that future federation
designers will use this tool to verify the feasibility of their federation designs and to identify potential design
refinements.

The infrastructural nature of the HLA poses some unique requirements and challenges in designing a simulation
model. The HLA is expected to support a wide variety of simulations: Platform, Aggregate, Engineering, Analysis,
time-stepped, event-driven, coordinated, independent, real-time, as-fast-as-possible, etc. These different types of
simulations typically also have different performance requirements: communication latency, response time, efficiency
of synchronization, repeatability, etc. Further, a wide range of hardware and software environments is expected. The
challenge is to construct a single simulation model flexible enough to capture this wide variety of federation
characteristics. This paper describes the modeling approach we have taken to meet this challenge.

1. INTRODUCTION

As a result of the recent DoD requirement for a
common technical framework to facilitate
interoperability and reuse among heterogeneous
simulations (Objective 1 in [DoD95]), the
Architecture Management Group (AMG) of the
Defense Modeling and Simulation Office (DMSO) has
undertaken the design and development of a high
level architecture (HLA). The HLA is one of the
three parts of the common technical framework (the
other two being the Conceptual Models of the
Mission Space and Data Standards), enabling
interoperability by requiring the specification of
common semantics for simulations and the
interactions among them.

The HLA consists of three parts:

• the object model template (OMT), used to define the
object models for individual simulations (simulation
object models or SOM’s) and for federations of
simulations (federation object models or FOM’s),

• the interface specification, describing the interfaces
used by objects to interoperate with each other, and

• a set of rules, which encapsulate the guiding
principles behind the HLA and the way in which it is
intended to be used.

The services in the interface specification are implemented
in the form of a run-time infrastructure (RTI) which
provides the mechanism for interoperability among the
simulations.

The Modeling and Simulation Master Plan [DoD95]
states that by the second quarter of FY97, all ongoing
DoD modeling and simulation programs will be
reviewed for immediate HLA-compliance. Since
HLA-compliance may affect the way in which
simulations interoperate, performance of federations
designed and built in conformance with the HLA is
critical. The HLA effort should not hinder
performance requirements in pursuit of the goal of
making simulations interoperate successfully.

In addition to prototyping efforts, DMSO has
sponsored the construction of a configurable
simulation model to facilitate performance analysis of
HLA-compliant federations. This paper describes the
design of the simulation model, highlighting the
unique challenges faced due to the wide spectrum of
simulations and corresponding performance
requirements encountered in the HLA context.

2. THE TASK

Our task is to design and develop a federation
analysis tool that will capture the relevant
performance characteristics of HLA-compliant
federations (including the RTI implementation
chosen), allowing federation designers to model and
study their federations prior to constructing them.
The tool focuses on the performance aspects rather
than functional aspects of federations, providing first-
order performance analysis capabilities that can be
used by designers of future federations to identify

potential design problems and refinements.

Modeling and Simulation is used within the DoD for a
variety of reasons including training, analysis, acquisition
and design. Since the HLA is intended to be the
underlying architecture for all DoD models and
simulations, it must meet a wide range of requirements.
The AMG has identified a representative set of
simulations and grouped them into four prototype
federations, or protofederations, which are being made
HLA-compliant as demonstrations of the HLA-concept.
The spectrum of simulation types and performance
requirements covered by these protofederations is
described in Table 1.

The wide variety of simulation types presents a challenge
in the design of a single simulation model: the model
should be flexible enough to capture the different
simulation types with ease and yet provide sufficient
detail to produce useful results. Further complicating the
task is the fact that a wide range of hardware/software
environments is also expected (for example,
communications could be Ethernet, ATM, DSI,
ScramNet, Myrinet, etc.). Our approach is to base the
design of the model on the current protofederations based
on the premise that they are representative of future
federations. Since we focus more on the characteristics of
the individual simulations rather than the protofederations
themselves, we believe the model can be easily extended
to accommodate most future federations. Clearly, new
concepts may emerge in future federations that are not
represented in the protofederations of today. These will
require appropriate enhancements to the model.

Name Description Federates Purpose Features Requirements

Platform Protofederation
(PPF)

Platform-
 level
DIS-based

BFTT
JTCTS
BDS-D
CCTT

Training of
soldiers and
staff

Real-time
Independent
Time-stepped

Low latency
 communications
Low overheads

Joint Training Federation
(JTFp)

Constructive
ALSP based

Eagle
NASM/AP
NSS
DEEM
JTF HQ

Training of
commanders

Loose
 real-time
Coordinated
Event stepped

Low overhead
 synchronization

Analysis Protofederation
(AP)

Constructive JWARS
MIDAS

Analysis Coordinated
As-fast-as-
 possible
Time/event
 stepped

Repeatability
Low overhead
 synchronization

Engineering Protofederation
(EnggPF)

Subsystem
 level
High fidelity

AFEWES
ACETEF
REDCAP
IADS
SBD
JMASS

Design
Acquisition

Real-time
Independent
Time/event
 stepped

Repeatability
Throughput
Low latency
 communications

Table 1 - Protofederations

3. SIMULATION MODEL DESIGN

Our goal is to construct a simulation model with
sufficient flexibility (i.e. it should be adequately
parameterized) so as to allow users to model
foreseeable HLA-compliant federations with ease.
Since this is a performance model rather than a
functional model, it is a stochastic abstraction of an
HLA federation, focusing on resource usage and
contention and ignoring the application-level details
of the simulated federation. Rather than simulating
the various application-level details of a federation
(and thus effectively re-implementing the federation),
we represent them by stochastic phenomena.
However, those aspects of a federation that concern
relevant performance metrics (such as resource usage)
are modeled in detail. For example, while the
generation of a message may be based on a stochastic
representation of a federate, the transportation of the
message from sender to receiver is modeled
explicitly.

Figure 1 shows the logical and physical views of a
typical HLA federation (we have omitted the layer
commonly called “middleware” since it is not
relevant to the performance model). While the RTI
appears logically as a layer above the underlying
communications of the federation, physically, the
RTI is implemented as a combination of distributed
components located at each federate as well as a
centralized component (which could be absent in
some RTI designs). Based on this figure, our model
consists of two submodels: a federate submodel
(including the local RTI component) and a
communications submodel. A separate model of the
central RTI component is not required since it can be
simulated using the federate submodel. The
communications model encapsulates all physical
communications in the federation.

3.1 Federate Submodel

At the time of writing, the physical definition of a federate
is still nebulous - the HLA Glossary [DMSO96a] defines
a federate only as a member of an HLA Federation. For
the present, we consider a federate as a simulation residing
on a single machine, with a single interface to the RTI.
Since we do not focus on the semantics of federates, we
can model federates that span multiple machines easily by
considering a federate as a collection of machines
(although the issue of whether the federate has multiple
interfaces to the RTI is still open and will be considered
as the model evolves).

Given the goal of building a general model for a wide
variety of federations, we require a general abstraction of a
federate that is flexible enough to capture many types of
simulations. The focus of the submodel should be on
resource usage and contention. Thus, the federate
submodel has three components:
• the workload characterizing the federate simulation,

which constitutes the major source of resource usage,
• the local RTI component, which will place additional

load on the machine resources and is therefore of
interest, and

• a system component that models relevant low-level
activities in the machine (such as sending and
receiving of messages), which can become an
important source of resource utilization depending on
the implementation of the RTI.

The latter two of these will be identical across all federates
and can thus be simulated in detail. What remains is a
general characterization of a federate. Such a
characterization is in fact provided by the HLA in the form
of the object model. All HLA-compliant federates and
federations must be represented using an object model. A
simulation object model (SOM) describes a particular
simulation while a federation object model (FOM)
describes an entire federation. Both of these object models

Run-Time Infrastructure

Communications (e.g. DSI)

RTI RTI RTI

Figure 1 : HLA Federation

Communications (e.g. DSI)

RTI RTI RTI
RTI

(a) Logical View (b) Physical View

Simulations

Simulations

are presented using the object model template -
OMT, which includes the class structure, component
structure, attributes of objects, interaction structure
among objects and associations. This object-based
representation of federates provides an appropriate and
convenient abstraction for use in our model.

Figure 2 shows the logical structure of a federate
submodel. The first component is SIM, which
consists of a collection of simulation objects
representing the simulation. Objects can be public
(solid) or private (shaded) depending on whether they
interact with other objects outside the federate. Public
objects generate RTI calls that are passed on to the
RTI component for processing and routing.

Processing may entail book-keeping operations that
maintain the routing information as well as
generation of system calls which are passed on to the
System component. The System component
simulates the actions of sending/receiving messages
to/from the communications submodel. We describe
each of the three components next.

3.1.1 SIM component

This component models the actual execution of
events by the federate. As such, it must be capable of
simulating both time-stepped and discrete-event
federates. It may be noted that fundamentally, these
two paradigms are equivalent, with the only practical
difference being in the way simulated time is
advanced - in the former, it is advanced once per
timestep (which may involve multiple event
executions) and in the latter, it is usually advanced
after each event execution. We do not model
individual events explicitly; rather, the execution of
an event is considered the same as a single
simulation or execution of the object that is
responsible for that event. Thus, the sequence of
event executions translates to a sequence of object
executions. A fundamental design choice we have
made is that the majority of the characterization of the
federate is placed in the description of the objects.
Thus, most of the stochastics in a federate are stored
in the objects and the SIM component provides the

dynamics for object execution. A more detailed discussion
on objects and the data associated with them is deferred to
Section 3.2

The SIM component is a loop, in each iteration of which
it executes the following actions:
• Examine each object for execution and execute it if

the data stored in the object so dictates. Execution of
the object usually consists of consuming machine
resources (such as CPU) and generating RTI calls.

• Advance simulation time of the federate. For time-
stepped simulations, this would be performed once in
each iteration of the SIM component whereas for
discrete-event simulations, it would be performed
after each object execution. Thus, a single model
accommodates both types of simulations. As noted in
Section 3.4, this and other time management aspects
of a federation will be incorporated into future
versions of the model.

• Perform overhead tasks such as computing line-of-
sight and dead-reckoning remote entities. Currently,
these tasks are performed once per iteration of the
SIM loop; in the near future, the model will include
the capability to specify these overheads for each
object execution.

3.1.2 RTI Component

RTI calls made by executing objects in the SIM
component are handled by the RTI component. This
component has two main responsibilities:
• maintaining the data structures that determine where

updates and interactions should go, and
• generating the messages and the lists of destinations

for updates and interactions.
Note, we take the approach that the sender of a message
determines the list of destinations. However, this does not
imply that the actual implementation of the RTI is also
sender-based (in fact, it is very likely it will not be sender
based). The point is that the functionality is concentrated
at the sender, but not necessarily the costs. We have
separated the functionality from the costs by adopting a
separate cost model for the RTI (explained in Section
3.3). This provides the flexibility of capturing various
RTI implementations simply by adjusting the costs in
the RTI cost model appropriately - the functionality is
fixed (and located at the sender for convenience).

The RTI component maintains a complex set of data
structures to track the publish/subscribe information
among federates and uses this information to determine
where updates and interactions should go. This
determination is done stochastically, based again on
parameters stored in objects invoking the RTI calls. At
the sender, the RTI generates system calls that are passed
to the System component. At the destination, the RTI
component receives messages from the System component
and forwards them to the SIM component after due
processing. As noted in Section 3.3, the costs in the RTI

System

RTI

Figure 2 - Federate submodel

SIM

cost model are implemented by consuming machine
resources.

3.1.3 System Component

The System component acts primarily as a conduit
for messages, incurring appropriate costs as messages
are sent and received. This component was included
since these low-level costs can dominate performance
depending on the implementations of the federates
and the RTI.

3.2 Objects

As noted earlier, a federate is essentially determined
by the objects it is comprised of. Objects contain no
application specific data (such as attributes of a tank),
but rather contain stochastic parameters that
determine their dynamic behavior. Parameters for an
object include the following:
1. The class to which it belongs, which determines

the default set of classes to which this object is
subscribed†.

2. Mean time to execute the object once, which
determines the CPU time requirement for
executions of the object.

3. Current activity state, transition matrix and
selection vector. To model the spectrum of
objects encountered in typical simulations, we
have introduced the concept of the activity state
of an object. An object can be in one of three
states of activity: high, medium or quiescent.
The activity state determines primarily, the
probability that the object will be executed at
any time. Thus, each object has a selection
vector consisting of three probabilities, one for
each activity state. It is expected that P[high]
will be greater than P[medium], which will be
greater than P[quiescent], which will be nearly
zero. Note, these probabilities directly affect
resource utilization. The selection vector is used
by the SIM component in deciding whether to
execute a particular object in any given iteration
of its loop. The state transition matrix controls
the movement of an object from one activity state
to another. This is a 3x3 matrix of probabilities
as shown in Table 2. The probability in any cell
is the probability that the object will move to
the column-state given that it is in the row-state.
It can be verified that the matrix in Table 2
describes an object that tends to be highly active
but that can become quiescent occasionally. The
state transition matrix is used by the SIM
component each time it examines an object for
possible execution. Irrespective of whether the

† The publish/subscribe mechanism of the HLA is used
to specify the information flow between federates
[DMSO96b].

object is executed in that particular iteration, its state
may be changed according to the matrix.

4. The RTI calls generated by an object are determined
by a combination of three parameters. First, a pair of
Boolean flags determines whether this object is
capable of generating messages to the external world
or not (i.e. whether it is public). Two flags are
required since an object can generate attribute updates
and interactions independently of each other. The
second parameter is an RTI call vector which is a
vector of probabilities for various RTI call types.
Each element of this vector corresponds to a particular
RTI call type and indicates the probability that a
generated RTI call is of that type as well as the
number of calls of that type generated. It follows from
this definition that the elements of this vector should
sum to 1.0. Only non-zero probabilities are
maintained, to reduce memory requirements. If an
RTI call type is selected based on this probability,
the SIM component generates n calls of that type,
where n is also specified in the vector. This is done
to provide the capability of “bursty” call generation
as would be required when instantiating a set of new
objects. The third parameter is a burst probability
that is used to control the generation of multiple RTI
calls at a stretch. After generating an RTI call, the
SIM component uses this probability to determine
whether another call should be generated. If so, the

RTI call vector is renormalized to eliminate calls that
have already been generated during this execution of
the object. Note, specifying a probability p is
equivalent to making an average of 1/(1-p)2 calls.

In addition to these parameters, the simulation program
computes and/or maintains other pieces of information for
each object, including:
• an identifier
• pointers to access those federates that should receive

updates and/or interactions generated by the object
• time since the last update was generated (for those

objects that specify minimum rate attributes)
• other book-keeping information

Although class structures capture the hierarchy among
object types, they do not capture the logical aggregations
in military units (e.g. a brigade). To this end, the model
allows the definition of groups of objects. Groups are
specified at run-time through configuration files. Objects
from different classes can be part of the same group. A
group specifies all information related to activity state (i.e.

High Medium Quiescent
High 0.8 0.15 0.05

Medium 0.1 0.4 0.5
Quiescent 0.1 0 0.9

Table 2 - State Transition Matrix

initial state, transition matrix and selection vector)
and RTI calls (Boolean flags, RTI call vector and
burst probability). The main property of a group is
that its constituent objects all use the parameters
specified for the group and thus exhibit identical
dynamics with respect to activity and RTI call
generation. The rationale is that this capability
allows a user to model an aggregate unit such as a
platoon of tanks since the constituent tanks will
likely act together.

To reduce the amount of information to be specified
by the user, object parameters are specified at the
class and group levels. Group parameters override
those specified for the class - if an object belongs to a
group, the group parameters are used; otherwise the
class parameters are used. If necessary, future versions
of the model will provide the capability to specify
parameters for individual objects.

The HLA provides federates with the capability to
express interest in only a subset of the attributes of
another object, through the subscribe mechanism. In
conjunction with the publish mechanism, the RTI
uses this information to route messages
appropriately‡. Since our design philosophy (no
application semantics) precludes the modeling of the
attributes of simulation objects, we have chosen to
model attribute-based subscription using a
probability parameter. Each subscription specifies a
probability that may be thought of as a level of
subscription. The SIM component uses this
probability when an update is generated to decide
whether a subscribing federate should receive that
update or not. This construct may be used to model
attribute-level subscription as follows. If federate A is
interested in 40% of federate B’s attributes and
federate B updates only 60% of its attributes regularly
of which 30% overlap with the 40% interest of
federate A, then federate A should specify a
subscription probability of 0.5 (30/60).

In our model, as in HLA federations, subscriptions
are specified at the federate level, rather than at the
object level. This has the desirable effect of reducing
the amount of configuration information the user has
to specify. We expect that each federate will include a
federate controller object that is responsible for
executing federate-level actions such as
publishing/subscribing and instantiating/deleting new
objects. The distinguishing feature of the federate
controller object is that it will be the only object in

‡ Data Distribution Management (DDM) builds upon
the basic interest management of the publish/subscribe
mechanism. Although DDM is not included in the
simulation model at present, we are currently in the
process of doing so.

the federate with a non-zero probability of generating these
federate-level RTI calls.

3.3 RTI Cost Model

One of the goals of the model is to help evaluate alternate
RTI implementations and/or design choices. As such,
this requires that the model should be easily configurable
to model different RTI designs. As noted earlier, we have
taken an approach that separates the functional aspects of
the RTI from the cost. The rationale behind this approach
is that the functionality is going to be essentially the
same across all implementations (dictated by the HLA
Interface Specification [DMSO96b]), and different
implementations can be characterized by the costs they
impose on the federation.

At the time of writing, the RTI cost model is still being
developed. For the present, we are focusing on object and
declaration management services. With regard to these
services, the RTI essentially acts as an information pipe.
When updates and interactions are generated, they must

be transported through the RTI, which will incur the
following potential costs:
• determination of receiver set - this could be as simple

as a table lookup to determine a multicast group
address

• generation and reception of physical messages - this
will occur in the System component of the federate
submodel

• any data distribution management overheads
• processing of received messages by the RTI at the

receiver
• generation of corresponding calls to the federate by

the RTI at the receiver
While this corresponds to the “push” model for data
exchange, similar costs will be incurred for the “pull”
model where a particular receiver initiates the data
exchange.

Many RTI calls result in changes in the state of the RTI
rather than data exchange between federates. This can
involve the exchange of messages between the RTI
components at various federates. The RTI cost model will
provide the user with the capability to specify, for each
type of RTI call, a sequence of message exchanges. Each

ATM DSI

Ethernet

Ports

Figure 3 - Communications submodel

step in this sequence could be: a unicast to a specific
destination (such as a central RTI component),
unicast to the sender (i.e. a reply), unicast to the
originator of the sequence, multicast to a uniformly
selected set of destinations or broadcast to all
federates. Finally, users will be able to specify the
local costs of all RTI call types (data exchange as
well as control) using a general method that allows
for constant values, distributions and general
functions of other variables.

3.4 Time Management

The modeling of Time Management (TM) warrants
some explanation. While performance in general is
typically dependent on the federation and how it
utilizes the various services, the performance of TM
is perhaps most so. The reason is that TM deals with
the advance of simulation time, which depends
directly on the federates. A large part of TM is the
synchronization protocol that provides time-stamp
ordering. Performance analysis of these protocols is a
well-established research area by itself [SrRe95]. Such
detailed performance analyses are beyond the scope of
this project. On the other hand, general cost estimates
to fit the RTI cost model would result in over-
simplification and therefore meaningless analyses. We
are currently investigating some sort of middle
ground. For the present, all aspects of TM are
omitted from the model since we are focusing on
protofederations that do not employ TM services.

3.5 Communications Submodel

The communications submodel encapsulates all
communications in the federation. Figure 3 shows the
structure of this submodel. Each federate connects to
the submodel through a bi-directional port. The ports
are interconnected by communication subsystems as
shown. The submodel will consist of first-order
models of various communication subsystems, which
can be instantiated as desired to construct the
topology. Communications are modeled at the
message level. As messages are generated, they are
routed through the topology using specified routes to
their destinations. We expect to model multicast
support in the communication subsystems, since
multicast is likely to be the primary communication
primitive. Currently, ATM is the only
communications subsystem modeled. We expect to
have DSI and Ethernet and possibly some constructs
for modeling gateways and routers (potential
bottlenecks) in the near future.

4. STATUS

The implementation of the simulation model is on-
going. Validation of the model will be performed
against data from the JPSD experiment, when that
data becomes available. In its current state, which

includes most of the functionality of the final version, the
model runs quite efficiently - on the order of ten times
faster than real time for a federation of 10 federates.

5. SUMMARY

We have described the design of a simulation model for
first-order performance analyses of HLA-compliant
federations. In order to be able to capture the wide variety
of simulations (and federations) that the HLA will
support, the model is extremely flexible. A consequence
is that effort is required on the part of the user to configure
the model to suit a particular federation. However, once
this is done, a small set of parameters can be established
as the control parameters across which the required
analyses are performed. It is important to remember that
this is a stochastic model - consequently, it is difficult
and inappropriate to program deterministic scenarios. As
with any simulation model, it is an approximation of
reality, but one that we believe is powerful enough to
provide useful insights into the design of future HLA
federations. As simulation programs contemplate and
move towards HLA compliance, this federation analysis
tool can be used to support the transition process by
demonstrating feasibility and alleviating concerns before
bending metal, supporting design choices and identifying
potential trouble-spots.

ACKNOWLEDGMENTS

The authors are grateful to Andy Gladyszak and Robin
Arrieta of Scientific and Engineering Software, Inc.,
Austin, TX, for their patient support during the initial
months of this contract. The simulation model is being
implemented by Greg Borek of Mystech Associates, Inc.
using the Workbench simulation tool. This work is
sponsored by DMSO under contract number N61339-96-
D-00020023 of the ADST II program.

REFERENCES

[DoD95] Department of Defense, Modeling and
Simulation (M&S) Master Plan, October 1995.

[DMSO96a] Defense Modeling and Simulation Office,
“HLA Glossary”, http://www.dmso.mil/hla/, August
1996.

[DMSO96b] Defense Modeling and Simulation Office,
“HLA Interface Specification”,
http://www.dmso.mil/hla/, August 1996.

[SrRe95] Srinivasan, S. and Reynolds, P.F. Jr.,
“NPSI Adaptive Synchronization Algorithms for
PDES”, Proceedings of the 1995 Winter Simulation
Conference, Dec. 1995, 658-665.

AUTHOR BIOGRAPHIES

SUDHIR SRINIVASAN is a research scientist at
Mystech Associates, Inc., conducting research in
parallel and distributed modeling and simulation. He
received his Ph.D. in Computer Science from the
University of Virginia in 1995 and Bachelor of
Engineering also in Computer Science from the
Bangalore University, India, in 1990. From August
1995 through February 1996, he was also a research
associate at the University of Virginia, working on
identifying fundamental issues in linking models at
different levels of resolution. His main research
interest is in parallel and distributed simulation,
especially the High Level Architecture. His other
interests are in parallel and distributed computing and
networking. He has published several papers in
conferences and journals and is a member of the ACM
and the IEEE Computer Society.

PAUL F. REYNOLDS, JR., Ph.D., University of
Texas at Austin, ’79, is an Associate Professor of
Computer Science at the University of Virginia. He
has published widely in the area of parallel
computation, specifically in parallel simulation, and
parallel language and algorithm design. He has served
on a number of national committees and advisory
groups as an expert on parallel computation, and
more specifically as an expert on parallel and
distributed simulation. He has been a consultant to
numerous corporations and government agencies in
the systems and simulation areas. He is a member of
the ACM and the IEEE Computer Society.

